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The top plots show agm [1, &) for 0 = & = 20 and agm [z, &) for 0 = &, & =200, while the bottc
agm (1, =) for complex values of z.

The AGM is very useful in computing the values of complete elliptic integrals and can also b
the inverse tangent.
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It is implemented in Mathematica as ArithmeticGeometricMean[a, b].

agm (i, &1 can be expressed in closed form in terms of the complete elliptic integral of the fi

lm[agmi(l, 2]] lagm(1, z)

-

The definition of the arithmetic-geometric mean also holds in the complex plane, as illustral
agm (1, Z).

The Legendre form of the arithmetic-geometric mean is given by

agm (1, %) = l_[% (1 + &),

where & = ¥ and

24T,

Aoyl = .
w+1 1+-'?(-';q

Special values of agn (i, &1 are summarized in the following table. The special value

L _(.83442684167407318628
agm (1, 42

(Sloane's A014549) is called Gauss's constant. It has the closed form

1 2 ' di
agm (1, v2) - N Y
ey
2 R AT

where the above integral is the lemniscate function and the equality of the arithmetic-geom
integral was known to Gauss (Borwein and Bailey 2003, pp. 13-15).
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|agm (1, 2) [|a068521|1.4567910310469068692.. |
lagm (1, 3) ||A084895][1.8636167832448965424...|
lagm (1, 4) |[A084896][2.2430285802876025701...|
lagm (1, 5 |[A084897|[2.6040081905309402887...|

The derivative of the AGM is given by

3 agm (g, &)
Eagm[m &) = m[z agm [z, &) F (%) — & 1)
7 @+ ER-25KR
- 8 kb (K (K2 ‘

where & = [ — &)/ + &), K (%) is a complete elliptic integral of the first kind, and £ (%] is the
integral of the second kind.

A series expansion for agm (1, &1 is given by
a[l+In[L &]]e?

=, [1+in(5 ) )

2In( &] 8l [+ &)

agm (1, &)= -

The AGM has the properties

A agm (w, &) = agm (A, A &)
agm [z, &) = agm ;—[rz+f:l], -1.,.'(145]
agm[lﬂ.'l—x?] = agm (1+2x, 1-x)

1+& 248
agm (1, &) = 5 agm |1, T |

Solutions to the differential equation

i i
[xg-x)d—f +B3x -1 d—y+xy:[]
= =

are given by [agm (1 +x, 1— %117 and [agm (1, =77t
A generalization of the arithmetic-geometric mean is

7, (@ 8 = P ldx
P _.I: (P +aP)UP (x2 + &2) P12’

which is related to solutions of the differential equation
x[l—xP]Y”+[1—Lp+1]xP]Y’—Lp—l]xP'1Y=D.

The case p =2 corresponds to the arithmetic-geometric mean via

fm dx f
fy (w, &) = = :

The case @ =3 gives the cubic relative

oo x l.',fx
I3 (a &) = \L‘ [a® +x3) (3 + %321
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discussed by Borwein and Borwein (1990, 1991) and Borwein (1996). For &, & = 0, this func
functional equation

It therefore turns out that for iteration with & = @ and &#; = & and

@, +2 8y
o+l = T
& 12
brnt - [? (@ + e +f:-§]] J
so
1
ln e, = lim &, = gj
Ao Ao I [, &)
where
01,1 2n
31l 1) = .
343

SEE ALSO: Arithmetic Mean, Arithmetic-Harmonic Mean, Gauss's Constant, Geometric Mean,
Function. [Pages Linking Here]
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http://functions.wolfram.com/EllipticFunctions/ArithmeticGeometricMean/
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