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Arithmetic-Geometric Mean

 

The arithmetic-geometric mean  of two numbers  and  (often also written 

is defined by starting with  and , then iterating  

until  to the desired precision. 

 

 and  converge towards each other since 

 

But , so 

 

Now, add  to each side 

 

so  

The top plots show  for  and  for , while the bottom two plots show 

 for complex values of .  

The AGM is very useful in computing the values of complete elliptic integrals and can also be used for finding 

the inverse tangent.  
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It is implemented in Mathematica as ArithmeticGeometricMean[a, b].  

 can be expressed in closed form in terms of the complete elliptic integral of the first kind

The definition of the arithmetic-geometric mean also holds in the complex plane, as illustrated above for 

.  

The Legendre form of the arithmetic-geometric mean is given by  

where  and 

 

Special values of  are summarized in the following table. The special value 

 

(Sloane's A014549) is called Gauss's constant. It has the closed form  

where the above integral is the lemniscate function and the equality of the arithmetic-geometric mean to this 

integral was known to Gauss (Borwein and Bailey 2003, pp. 13-15).  

Sloane value
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The derivative of the AGM is given by  

where ,  is a complete elliptic integral of the first kind, and  is the 

integral of the second kind.  

A series expansion for  is given by 

 

The AGM has the properties  

Solutions to the differential equation  

are given by  and . 

 

A generalization of the arithmetic-geometric mean is  

which is related to solutions of the differential equation  

The case  corresponds to the arithmetic-geometric mean via 

 

The case  gives the cubic relative 

 

A068521 1.4567910310469068692...

A084895 1.8636167832448965424...

A084896 2.2430285802876025701...

A084897 2.6040081905309402887...
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discussed by Borwein and Borwein (1990, 1991) and Borwein (1996). For , this function satisfies the 

functional equation  

It therefore turns out that for iteration with  and  and 

 

so  

where  

SEE ALSO: Arithmetic Mean, Arithmetic-Harmonic Mean, Gauss's Constant, Geometric Mean, 

Function. [Pages Linking Here]  

RELATED WOLFRAM SITES: 

http://functions.wolfram.com/EllipticFunctions/ArithmeticGeometricMean/  
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